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Abstract: Identification of age-related neuropsychiatric disorders, i.e., late-life depression
(LDD) and mild cognitive impairment (MCI) is of imperative clinical value considering the large
probability of misdiagnosis and current lack of sensitive, non-invasive and low-cost diagnostic
approaches. Here, the serum surface-enhanced Raman spectroscopy (SERS) technique is
proposed to identify healthy controls, LDD and MCI patients. Based on SERS peaks analysis,
abnormal levels of ascorbic acid, saccharide, cell-free DNA and amino acids in serum are found
to be potential biomarkers for identifying LDD and MCI. These biomarkers might be related to
oxidative stress, nutritional status, lipid peroxidation and metabolic abnormalities. Moreover,
partial least square analysis-linear discriminant analysis (PLS-LDA) is applied to those collected
SERS spectra. Finally, the overall identification accuracy is 83.2%, and accuracies are 91.6%
and 85.7% for differentiating healthy versus neuropsychiatric disorders and LDD versus MCI,
respectively. Thus, the serum SERS combined with multivariate statistical analysis has proved
its successful potential for rapid, sensitive and non-invasive identification of healthy, LDD and
MCI, which may open new avenues for early diagnosis and timely intervention for age-related
neuropsychiatric disorders.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Currently, age-related neuropsychiatric disorders greatly increase with the extended lifespan
and improved public health. Among them, late-life depression (LDD) and Alzheimer’s disease
(AD) are the most popular in the elderly. LDD is commonly charactered with depressed mood,
sleep disorders, negative emotions and/or morbid thoughts [1]. Almost 20% of people over 65
have depressive symptoms, while the percent reaches 40% in people above the age of 85 [2].
Generally, LDD is controllable and curable if timely diagnosis and appropriate treatment are
performed. However, the onset of LDD is often ignored or covered up by aging or aging-related
diseases resulting less than 20% of them are timely diagnosed and aggressively treated [2]. AD,
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as one popular aging-related disease, is a severe progressive, irreversible neurodegenerative
disorder of the brain characterized with accumulation of amyloid plaques and neurofibrillary
tangles, causing memory loss and cognition decline. The incidence of AD is nearly 5–8% in
people over 65, while the percent increases to 25–50% as the age rises over 85 [3]. In general,
AD progresses along a continuum from preclinical disease, to mild cognitive impairment (MCI)
and then AD dementia with a median survival time of 5 years after diagnosis [3,4]. So far, there
is no effective therapies for AD, early recognition and intervention of MCI has been demonstrated
particularly significant to slow disease progression and increase the survival of patients [4,5].
However, LLD and MCI have similar clinical presentations [6,7], such as anxiety, loss of memory
and cognitive impairment, as well as share a number of pathophysiology processes, including
neurodegenerative changes, alterations to cerebrovascular functioning and high inflammatory
cytokine levels, resulting in difficulty to correctly identify. Thus, early and accurate diagnosis of
LLD and MCI is necessary for timely decision on precise intervention and therapy.

Neuropsychiatric disorders in clinical are normally diagnosed by several methods include
neuropsychiatric questionnaires [8], biomedical imaging [9] and biomarkers analysis in cerebral
spinal fluid (CSF) and blood [10,11]. Neuropsychiatric questionnaires (such as Mini-Mental State
Examination (MMSE), Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE)
and Montreal Cognitive Assessment (MoCA)) are the most frequently used but are subjective and
unable to predict the onset of disease [8]. Biomedical imaging of brain (such as computerized
tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET))
is characterized with high diagnostic accuracy, but suffers from time and cost-consuming [9].
Biomarkers (such as β-amyloid (Aβ), phosphorylated tau 181 (P-tau181) and t-tau (T-tau) protein)
detection in CSF is less cost but is too invasive (lumbar puncture) and always needs special
equipment for sample analysis [10]. Although blood biomarkers, such as T-tau, P-tau and Aβ42
have been studied in recent years and show excellent performance in detection of neuropsychiatric
disorders, but various sensitivity, specificity and high false positive rate limit their clinical
applications [11]. Hence, developing a rapid, sensitive and non-invasive diagnostic method would
be of significant clinical value to identify LDD and MCI for timely intervention and rationally
therapy for the individual patient.

As previous studies have indicated close associations between neuropsychiatric disorders and
metabolism, including mitochondrial energy metabolism [12], glucose metabolism [13] and amino
acid metabolism [14], metabolic variations detection might be a substitute for traditional methods
in identification of LDD and MCI patients. Coincidentally, Raman spectroscopy (RS), as a fast,
non-destructive and label-free spectroscopic technique, can provide conformational structure and
specific information about metabolic variations by measuring the inelastic scattering between
monochromatic photons and detected molecules [15,16]. Peripheral blood, is commonly used as
the most ideal specimen for Raman acquisition, because it typically contains rich biochemical
information of molecules from metabolic changes and body microenvironment as well as can
be collected and measured with high convenience and repeatability. Although the spontaneous
Raman signal of blood sample is relatively weak, by the presence of a plasmonic structure in the
close vicinity of the target analyte, i.e., surface-enhanced Raman spectroscopy (SERS) [17], the
Raman signal can be amplified by 1014 times based on electromagnetic enhancement (EME)
and chemical enhancement (CE) [18]. With the characteristics of flexibility, non-invasive and
sensitivity, RS and SERS have attracted a growing attention and are frequently used in disease
diagnosis, including diagnosis of neuropsychiatric disorders. Carota et al. measured the blood
serum Raman spectra from healthy and AD patients, and lower level of carotenoids were detected
in blood from AD patients. Good discrimination with correct predictions of 93% demonstrated
the possibility to use Raman spectroscopy for the diagnosis of AD [19]. Paraskevaidi et al.
collected Raman spectra of blood plasma from early-stage AD, late-stage AD, dementia with
Lewy bodies and healthy controls. High classification accuracy over 80% for the different groups
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were achieved, and important biomolecules such as amide II, lipid and phenylalanine can serve as
a panel of biomarkers for diagnosis of neurodegeneration disorders [20]. Although these results
suggest Raman spectroscopy is a sensitive, cost-effective and blood-based method for diagnosis
of neurodegeneration disorders, to the best of our knowledge, characterization of blood samples
from LDD and MCI patients by RS or SERS has not yet been studied. Thus, fast and accurate
detecting and analyzing of metabolic changes in blood samples between LDD and MCI patients
is greatly significant for early diagnosis and rational intervention.

In this paper, the SERS spectra are collected from blood serum mixed with Au@Ag nanoparti-
cles aggregates (Au@AgNAs) colloidal substrate to explore the metabolic differences among
healthy control, LDD and MCI patients. Significant variations in ascorbic acid, saccharide,
cell-free DNA and amino acids levels are observed in SERS peaks analysis. After PLS-LDA-based
multivariate statistical analysis, the overall accuracy is 83.2% for identifying healthy, LDD
and MCI patients. Hence, the serum SERS technique combined with PLS-LDA has proved its
successful potential for rapid, sensitive and non-invasive identifying healthy, LDD and MCI,
which can open new avenues for early diagnosis and timely intervention for neuropsychiatric
disorders.

2. Materials and methods

2.1. Sample preparation and SERS measurements

In this paper, 40 healthy controls (70.4± 5.2 years, 19 male and 21 female) and 79 neuropsychiatric
disorders, i.e., 43 LDD cases (70.8± 8.3 years, 8 male and 35 female) and 36 MCI cases (74.2± 8.7
years, 12 male and 24 female) were carefully chosen from the Ningbo Kangning Hospital in
China based on the clinical assessments, biomedical imaging and neuropsychological tests. This
study was conducted in accordance with the Declaration of Helsinki. An ethical approval (No.
NBKNYY-2021-LC-56, Dec./31/2021) has been obtained and written informed consent was
signed by each above patient. 3 ml overnight fasting peripheral blood was taken from each subject
between 7:00 to 8:00 A.M. Each blood sample was centrifuged at 3000 rpm for 10 min at 4°C to
collect the supernatant. These serum samples were rapidly stored at −80°C freezer.

For SERS measurements, a substrate of core-shell Au@AgNAs colloidal solution was made by
Ag deposition on the surface of Au using the seed-growth method [21]. Firstly, AuNPs (diameter
is about 32 nm) were synthesized by the reduction of HAuCl4·4H2O using trisodium citrate [22].
Then, the above AuNPs seeds (3 ml) were sonicated for 10 min and mixed with ascorbic acid
solution (150 µl,10 mM). Afterwards, AgNO3 solution (150 µl,10 mM) was dropped into the
above solution with shaking at 1000 rpm. Continuous shaking for 7 min was done after the color
of the solution became orange. Finally, the core-shell Au@AgNAs colloids was synthesized.

4 ml above colloidal solution was centrifuged at 10,000 rpm for 10 min to achieve the final
concentration by discarding 3.8 ml supernatant. Then, the thawed serum was mixed with above
Au@AgNAs in 1:1 proportion and incubated for 2 h at room temperature. 2µl of the mixture was
dropped onto an aluminum substrate and air dried for SERS measurements. The SERS spectra
were obtained by using a Renishaw inVia Qontor confocal Raman spectrometer (Renishaw, UK)
coupled to a Leica microscope with a 50× objective (NA= 0.50) in the backscattering geometry.
SERS signal was excited by a 785 nm laser and measured in a wavenumber range from 400 cm−1

to 1800cm−1 with a spectral resolution of 1 cm−1. In order to reduce the operation variations and
coffee-ring effect, repeated measurements were collected at five different positions (including
the middle and the edge) and the mean of these five measurements served as the final SERS
spectrum of each subject for further processing and analysis. The detailed workflow of the above
process was demonstrated in Fig. 1.
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Fig. 1. The workflow of the sample preparation and SERS measurement.

2.2. Spectral preprocessing and analysis

SERS spectra were successively preprocessed by Savitzky-Golay-based smooth [23], the fifth
order polynomial fitting-based fluorescence background removal and maximum normalization
[23,24].

After the above preprocessing, the assignments of Raman-active vibrational modes and
biochemical components were performed on the serum SERS peaks. Two-sample t-test was then
applied on these SERS peaks’ intensities between the healthy controls versus neuropsychiatric
disorders and the LDD versus the MCI, respectively, and only the biochemical components with
statistically significant differences (p< 0.05) were treated as the potential diagnostic biomarkers.
Finally, multivariate statistical analysis of PLS-LDA was employed to establish classification
models. And specifically, a two-step classification scheme was carried out by two binary
classifiers; i.e., a binary classifier was first used to differentiate healthy versus neuropsychiatric
disorders groups and then a second binary classifier was further used to differentiate LDD versus
MCI groups. In the above models, PLS analysis was first conducted on the SERS spectra and
the first 15 PLS scores were extracted, then, only the PLS scores with statistically significant
difference selected by two-sample t-test were put into subsequent LDA to train each classification
model. Both models were evaluated by leave-one-out (LOO) cross-validation, in which the
classification accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curves and
the area under ROC (AUC) were used as the criteria to evaluate their performances.

3. Results and discussions

3.1. Characterization of the Au@AgNAs colloids

For SERS measurements, silver colloids (AgNPs) and gold colloids (AuNPs) are the most
frequently used SERS substrates [25]. Generally, AuNPs synthesis is simple and controllable, but
the enhancement ability is weak. In contrast, much stronger enhancement factor can be generated
by AgNPs, while nonuniform shapes result in poor repeatability of SERS signal.

In this study, Au@AgNAs colloids is created and used as SERS substrate. The characterizations
by transmission electron microscopy (TEM), UV/visible absorption spectroscopy and the
corresponding size distribution are plotted in Fig. 2(a), which shows the almost uniform core-shell
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structure with a mean diameter of approximately 50 nm including the outer Ag shell thickness of
8.2 nm, and two peaks at 400 nm and 500 nm corresponding to the plasmon resonance of Ag
shell and Au core, respectively. Furthermore, the Raman enhancement ability and reproducibility
of Au@AgNAs colloids are evaluated using 4-MBA as the probe molecule, as shown in Fig. 2(b)
and Fig. 2(c). By comparison the spectra of spontaneous Raman spectrum and SERS spectrum
of 4-MBA absorbed on the different colloids in Fig. 2(b), the highest enhancement effect is
observed in sample of 4-MBA on the synthesized core-shell Au@AgNAs. Moreover, 150 SERS
spectra are obtained within a selected area by mapping for 4-MBA on core-shell Au@AgNAs,
the consistent spectral shape in Fig. 2(c) and uniform SERS signal with slight fluctuation from
different spectra at peak of 1078 cm−1 in Fig. 2(d) are intuitively evidenced by the consistent
distribution of these 150 intensities with a calculated RSD (relative standard deviation, RSD)
value of only 3.6%. These results are consistent with those in published papers and demonstrated
that core-shell Au@AgNAs is an effective SERS substrate with characteristics of size-uniformity,
strong enhancement ability and fine reproducibility.

Fig. 2. (a) TEM images, UV/visible absorption spectrum and size distribution of core-shell
Au@AgNAs; (b) Comparison of spontaneous Raman spectrum of 4-MBA and SERS
spectrum of 4-MBA absorbed on the prepared core-shell Au@AgNAs, AuNPs (50 nm) and
AgNPs (50 nm), respectively; (c) 150 SERS spectra obtained within the selected area by
mapping for 4-MBA on core-shell Au@AgNAs; (d) Distribution of SERS intensities at peak
of 1078 cm−1 from the total 150 SERS spectra.
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3.2. SERS peaks analysis among different groups

3.2.1. SERS peaks’ tentative assignments

After preprocessing, the mean SERS spectra of healthy, LDD and MCI groups are plotted in
Fig. 3. By visual inspection, the primary SERS peaks can be found at 493, 592, 638, 725, 813,
887, 1003, 1134, 1207, 1331 and 1656 cm−1. The detailed vibrational modes and biochemical
components assignments of these peaks are listed in Table 1 according to the previously published
studies [19,20,26,27].
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Fig. 3. The average serum SERS spectra after preprocessing from the healthy, LDD and
MCI groups, in which the shaded areas represent the standard deviations among each group.

Table 1. Tentative assignments of the primary SERS peaks of blood
serum [19,20,26,27].

Peak position (cm−1) Assignments

493 Ring vibration, Cellulose, guanine, L-Arginine

592 Ascorbic acid, amide-VI

638 C-S stretching vibration, L-Tyrosine, lactose

725 C-H bending vibration, Adenine, coenzyme A

813 C-C-O stretching vibration, L-Serine, glutathione

887 C-O-H bending vibration, Glutathione, D-(+)-galactosamine

1003 C-C symmetric stretch, Phenylalanine

1134 C-N stretching vibration, D-Mannose

1207 Ring vibration, L-Tryptophan, phenylalanine

1331 C-H stretching vibration, Nucleic acid bases, D-mannose

1656 C=O stretching vibration, Amide-I, α-Helix

3.2.2. Healthy versus neuropsychiatric disorders

Figure 4(a) and (b) show the average serum SERS spectra of healthy and neuropsychiatric
disorders groups as well as the subtracted spectrum, respectively. After performing two-sample
t-test on intensities of the primary SERS peaks in Table 1, five SERS peaks at 813 cm−1

(p= 0.0010), 887 cm−1 (p= 0.0056), 1134 cm−1 (p= 0.0032), 1331 cm−1 (p= 0.0353) and
1656 cm−1 (p= 0.0017) are discovered to be with statistically significant differences between the
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healthy and neuropsychiatric disorders groups, as shown in Fig. 4(c). Specifically, SERS intensity
at 813 cm−1 is lower in neuropsychiatric disorders group compared to that in healthy group, which
means less L-serine in the serum of neuropsychiatric disorders patients. L-serine is a polar amino
acid and its residues serve as a primary site for phosphorylation, phosphorylation status is closely
associated with the ability to alter protein interactions and conformation, which is critical for
cellular metabolism and neurological function [28]. Dysfunctional phosphorylation, particularly
of tau protein, is found in neuropsychiatric disorders patients [29,30], which might result in
a decreasing concentration of L-serine in blood serum. A similar trend of decreasing SERS
intensities at 887 and 1134 cm−1 corresponding to lower glutathione and saccharides are also
found in neuropsychiatric disorders group. Glutathione is a major antioxidant that can eliminate
free radicals (such as reactive oxygen species) and play an important role in regulating redox
balance and oxidative stress [31]. However, excess oxidative stress in brain disorders impairs
the protein expression and activity of glutathione-related enzymes (such as GPx, GR, GST, and
GCL), resulting in its abnormal synthesis and metabolism [32]. In addition, glutathione synthesis
is also related to mitochondrial functions [32]. The impaired mitochondrial energy metabolism
(such as NAD+, NADH, ATP, pyruvate, and lactate) result from oxidative stress might reduce the
production of NADPH [33], which is a coenzyme that mediates glutathione synthesis, thus finally
lead to less glutathione in neuropsychiatric disorders group. Coincidentally, many previous
studies conducted in animal models and clinical patients with brain disorders have demonstrated
decreased levels of glutathione in peripheral blood of these individuals [31,32,34]. Furthermore,
glutathione deficiency often occurs prior to neuropathological abnormalities [32] and might can
be used as a biomarker for early diagnosis of neuropsychiatric disorders. In brain, saccharides are
normally glycoconjugated to proteins or lipids to help structural development, synaptogenesis and
synaptic transmission [35]. The decreasing saccharides in blood of neuropsychiatric disorders
might be due to the poor neurological functioning from abnormal glycoprotein and ganglioside
metabolism in brain disorders.

In contrast, SERS peak at 1331 cm−1 show higher intensity in neuropsychiatric disorders
patients compared with it in healthy control, which suggests more cell-free DNA in blood from
neuropsychiatric disorders patients. Normally, circulating cell-free DNA is a product of cell death.
Once cell death, it shrinks and degrades its plasma membrane, and ultimately rupture and release
its contents into the blood, including DNA fragments [36]. Thus, the increasing of circulating
cell-free DNA might result from the excess cell death in brain derived from the oxidative stress in
neuropsychiatric disorders. The larger SERS peak of 1656 cm−1 in the neuropsychiatric disorders
group indicates more free amino acids in blood serum, which is in agreement with findings in
several recent studies [37–39]. Amino acids play essential roles in the control of brain functions
by acting as regulators of the energy metabolism [37]. Alterations in blood free amino acid might
be influenced by the compromised energy metabolism including nitrogen metabolism [38] and
cerebral glucose metabolism [40] in neuropsychiatric disorders patients.

The above results demonstrate that obvious variations of the biomolecules, such as L-serine,
glutathione and saccharides among different groups, suggesting promising potential for identifying
neuropsychiatric disorders using serum SERS technique.

3.2.3. LDD versus MCI

Figure 5(a) and (b) show the average serum SERS spectra of LDD and MCI groups as well
as the subtracted spectrum, respectively. After performing two-sample t-test on intensities of
the obvious SERS peaks, four SERS peaks at 592 cm−1 (p= 0.0245), 1134 cm−1 (p= 0.0042),
1331 cm−1 (p= 0.0287) and 1656 cm−1 (p= 0.0025) are identified to be with statistically significant
differences between LDD and MCI groups, as shown in Fig. 5(c). In particular, SERS intensity at
592 cm−1 is lower in MCI group than that in LDD group, demonstrate less ascorbic acid is in MCI
group. Many studies indicate that low level of ascorbic acid is associated with depression [41,42]
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Fig. 4. (a)The comparison of average serum SERS spectra between healthy and neuropsy-
chiatric disorders groups; (b) the subtracted spectrum between these two groups; (c) the
boxplots of SERS intensities with statistically significant differences between these two
groups at peaks of 813, 887, 1134, 1331 and 1656 cm−1.

and cognitive impairment [43,44], and lower ascorbic acid status is linked to greater cognitive
impairment. Ascorbic acid is a remarkable potent water-soluble antioxidant without synthesis
in the brain, which catalyzes the reduction of superoxide radicals and plays a crucial role in
maintaining oxidative balance [42]. Increased consumption of ascorbic acid by the oxidative
stress in brain might lead to its lower levels in serum of MCI patients [43,45]. The lower SERS
intensity at 1134 cm−1 corresponding to D-mannose suggests less saccharide in blood serum
of MCI group. In brain, saccharides are commonly conjugated to proteins or lipids to help
structural development, synaptogenesis and synaptic transmission [35], which have beneficial
effects on neuronal and cognitive function. Many studies demonstrated a high concentration of
Aβ deposits in MCI and AD patients [46–48], in which Aβ are produced by a glycoprotein called
amyloid precursor protein [49], this might result in a decreasing level of saccharide in blood of
MCI patients. Another possible reason might be the poor nutritional status in the brain of MCI
patients lead to the abnormal saccharide metabolism [35].
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Fig. 5. (a) The comparison of average serum SERS spectra between LDD and MCI groups;
(b) the subtracted spectrum between these two groups; (c) the boxplots of SERS intensities
with statistically significant differences between these two groups at peaks of 592,1134, 1331
and 1656 cm−1.

On the contrary, higher intensities at 1331 and 1656 cm−1 indicate more free nucleic acid
bases and amino acids in blood serum of MCI group than that in LDD group. Increased cell-free
DNA could be attributed to the fact that more cell death result from intensive oxidative stress in
MCI patients [36,50]. In addition, severe DNA damaging from aldehydes produced by increased
lipid peroxidation in MCI might also lead to an increasing level of DNA fragments in blood [51].

These findings suggest that the levels of ascorbic acid, saccharide, cell-free DNA and amino
acids in serum are expected to be promising indicators for identifying LDD and MCI patients.

3.3. Multivariate statistical analysis of SERS spectra among different groups

In multivariate statistical analysis, the PLS-LDA-based two-step binary classification scheme is
conducted. The first fifteen PLS scores are extracted from the SERS measurements and then
analyzed by two-sample t-test to achieve the PLS scores with significant difference (p<0.05)
between healthy and neuropsychiatric disorders, as well as between LDD and MCI patients,
and then these PLS scores are used as the input of classification models. In the first step, only
the 1st (p= 0.0000), 2nd (p= 0.0000), 4th (p= 0.0095), 6th (p= 0.0003), 8th (p= 0.0326), 11th
(p= 0.0062) and 14th (p= 0.0381) PLS scores serve as the input of the classification model to
differentiate healthy versus neuropsychiatric disorders. Similarly, in the second step, only the 1st
(p= 0.0011), 2nd (p= 0.0000), 3rd (p= 0.0265) and 5th (p= 0.0245) PLS scores serve as the
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input of the classification model to differentiate LDD versus MCI patients. Besides, Fig. 6(a) and
(b) show the corresponding loadings of the above PLS scores in the two binary classification
models. It can be observed that the peaks in those PLS loadings are consistent with those SERS
peaks with statistically significant differences among different groups as shown in Fig. 4(c) and
Fig. 5(c), especially for the first several PLS loadings, which indicate that the PLS loadings
catch the most identifying information of SERS spectra among each group. Besides, the linear
discriminant scores are derived from the PLS-LDA models in the two-step binary classification
scheme and plotted in Fig. 7(a) and (b), in which excellent separation between healthy control and
neuropsychiatric disorders group as well as LDD group and MCI group can be clearly observed.

The performances of above models in the PLS-LDA-based two-step binary classification scheme
are evaluated by LOO cross-validation with the criteria of classification accuracy, sensitivity,
specificity, ROC curves and the AUC value. More specifically, the neuropsychiatric disorders
group and the MCI group are treated as positive in the first and second binary classification,
respectively. The total classification results of healthy, LDD and MCI groups are shown in Table 2.
Specifically, in the first binary classification, the accuracy, sensitivity and specificity are 91.6%,
88.6% and 97.5%, respectively; in the second binary classification, the accuracy, sensitivity and
specificity are 85.7%, 84.8% and 86.5%, respectively. Hence, the total accuracy is 83.2% for
distinguishing healthy, LDD and MCI groups. Besides, the ROC curves and large AUC values
in Fig. 8 can be used as further evidence to the excellent performance of our proposed method.

Fig. 6. The corresponding loadings of PLS scores with statistically significant differences
for differentiating (a) the healthy and neuropsychiatric disorders groups; (b) the LDD and
MCI groups.
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Fig. 7. Scatter plots of the linear discriminant scores for differentiating (a) the healthy and
neuropsychiatric disorders groups; (b) the LDD and MCI groups.

Table 2. The overall classification results of the healthy, LDD and MCI groups by PLS-LDA-based
two-step binary classification scheme with LOO cross-validation.

PLS-LDA-based two-step binary classification
scheme

Sensitivity Specificity Accuracy

(The first binary classification)
Healthy v.s. neuropsychiatric disorders

88.6% (70/79) 97.5% (39/40) 91.6% (109/119)

(The second binary classification)
LDD v.s. MCI

84.8% (28/33) 86.5% (32/37) 85.7% (60/70)
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Fig. 8. The ROC curves obtained by using PLS-LDA-based two-step binary classification
scheme between the healthy and neuropsychiatric disorders groups, and between the LDD
and MCI groups.
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Thus, it is convincingly demonstrated that serum SERS technique combined with PLS-LDA has
promising potential for accurately identifying healthy, LDD and MCI patients.

4. Conclusions

In this study, the possibility of identifying LDD and MCI patients by serum SERS technology
is investigated. By comparing the average serum SERS spectra, obvious biochemical changes
including ascorbic acid, saccharide, cell-free DNA and amino acids are found among different
groups, which might be related to the oxidative stress, nutritional status, lipid peroxidation and
metabolic abnormalities in brain. Besides, the excellent performances of the PLS-LDA-based
two-step binary classification scheme furtherly indicated that the serum SERS technique can be
used as a promising tool for fast, sensitive and non-invasive detection of LDD and MCI; which
may bring a new way to assist in early diagnosis and timely intervention of neuropsychiatric
disorders.
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